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1. INTRODUCTION

When a structure experiences a certain degree of damage its sti!ness and inertial
properties su!er a change, and a new state of force distribution and equilibrium is
attained. The variations of these mechanical parameters produce alterations of the
natural frequencies and mode shapes of the virgin structural system. The ultimate
goal of vibration monitoring techniques is the knowledge of the structural health of
the element under study by measuring its dynamical response. In a large majority of
cases, damage is caused by the appearance of cracks that originate discontinuities
in the structure.

From a historical viewpoint, the e!ect of cracks on reinforced concrete structural
elements investigated by Bock [1] is probably the "rst situation where the e!ect of
cracks upon the dynamic properties of a structural element was analyzed.
A detailed survey of the literature can be found in references [2}4].

Structural health assessment through dynamical analysis has been proved to be
successful in several cases, as it is the case of cracked rotors. Recently, Ramesh et al.
[5] analyzed the dynamic behavior of annular plates with periodic radial cracks, in
an ingenious attempt to model cracked #ywheels, clutch plates, etc.

In this paper, we will analyze the dynamic behavior of cracked cantilever
beams. The e!ect of cracks on the dynamic behavior of beams has received much
attention because of its importance in mechanical and civil engineering
applications [6]. It is interesting to point out that in the case of a long, fractured
bone the variation of natural frequencies may eventually constitute an indication of
the healing process [7].

Several theoretical methods have been developed to model the problem of
cracked beams. Theoretical approaches found in the literature range from
analytical to numerical. Gudmunson [8] used a "rst order perturbation method
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to predict the changes in resonance frequencies of a structure resulting from
cracks, notches or other geometrical changes. Qian et al. [9] used the "nite element
method to model the stress in a cracked beam. In both papers, theoretical
predictions are compared with the experimental measurements reported by
Wendtland [10].

Ostachowicz and Krawczuk [11] investigated the in#uence of the position
and depth of two open cracks upon the fundamental frequency of the natural
#exural vibrations of a cantilever beam. To model the e!ect of the local stress in the
crack, they introduced two di!erent functions according to the symmetry of the
crack.

Narkis [12] simulated the crack by an equivalent spring, connecting the two
segments of the beam. Based on this model, he developed a closed-form solution
which he applied to the study of the inverse problem of localization of cracks on the
basis of frequency measurements. Using a similar model Masoud et al. [13]
investigated the transverse vibrational characteristics of a prestressed "xed}
"xed beam with a symmetric crack in its middle span and the coupling e!ect
between the crack depth and the axial load on the fundamental frequency. They
showed that it is not possible to treat this problem by superposition of the two
separate e!ects (crack plus axial load). They also reported experimental results
obtained using piezoelectric accelerometers to measure the vibration signal for
a "xed}"xed beam.

Ruotolo and Surace [14] developed a method that uses the modal parameters
of the lower modes for the non-destructive detection and sizing of cracks in
beams.

A variational approach to the problem of cracked beams has been used by
Chondros et al. [15], who developed a continuous cracked beam vibration theory
for the lateral vibration of cracked Bernoulli}Euler beams with single-edge or
double-edge open cracks. In that paper, the vibrational formulation is used to
develop the di!erential equation and the boundary conditions of the cracked beam
as a one-dimensional continuum. They also reported experimental results for the
variation of the fundamental frequency of a simply supported beam with a fatigue
crack in its middle span.

Several authors have also studied the non-linear characteristics of open}closed
cracks. Chati et al. [16] studied the non-linear case of open}closed cracks. They
solved it by the Finite Element Method, introducing a bilinear frequency.
Tsyfansky and Beresnevich [17] analyzed the essential non-linear properties of
open}closed cracks as a way to detect the presence of the crack, as this non-linear
behavior is not present in the undamaged structure.

In the work presented herein, we report measurements made using an optical
experimental set-up which includes a He}Ne laser and a photodiode. The principles
used in the measuring process are explained. A simple, one-dimensional theoretical
model is used to simulate the dynamical behavior of the beam. Two di!erent local
#exibility non-dimensional functions are tried out and the theoretical predictions
are compared with the experimental results. Theoretical predictions and
experimental results show that very good agreement is achieved for cracks as deep
as 80% of the total height of the beam.
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2. EXPERIMENTAL SET-UP

In the experiments described herein, we measured the "rst "ve natural
frequencies of the cantilever beam in Figure 1, where the cracks were arti"cially
produced by an end mill. The same methodology may be employed to detect
frequency variations in beams with fatigue cracks. The laboratory set-up used for
the measurements is shown in Figure 2. The purpose of this experimental
arrangement is to determine the natural frequencies of cracked cantilever beams
from measurements of the oscillation amplitude at a "xed position along the beam.
As the frequency of the external excitation is swept across the range of interest, the
eigenfrequencies are identi"ed as those frequency values for which a local
maximum in the oscillation amplitude is found, i.e., where resonant coupling
occurs. In our set-up, the beam of a 15-mW He}Ne laser emitting in the TEM

00
mode (Type: Melles Griot 05-LHR-991) is intercepted by a knife edge attached to
the cantilever beam and focused by a small lens into a photodiode. Interception of
Figure 1. Cantilever beam under study.

Figure 2. Experimental set-up.
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the laser beam by the blade results in a decrease in the light intensity collected by
the photodiode. As the TEM

00
mode in which the He}Ne laser emits exhibits

a Gaussian irradiance pro"le [18], the output signal of the photodiode varies as the
error function when the knife edge is moved. Since the error function is
approximately linear in the neighborhood of the origin, the linear range of the
optical measuring system is then found close to the position where the blade
intercepts half of the laser beam. The output signal from the photodiode was
recorded by a 60 MHz digital real-time oscilloscope (Type: Tektronix TDS 210)
and simultaneously sent to a 75 MHz timer/counter (Type: Hewlett-Packard
5308A). This simple, yet precise set-up allowed for the measurement of local
displacements as small as 1 lm.

The cantilever beams were forced into oscillation by a 15-mm-diameter, 20-turn
coil weighting 2)8 gr. attached to the end of the beam. The coil was placed in the
"eld of a permanent magnet and was excited by a waveform generator (Type:
Hewlett-Packard 209A).

The cantilever beams used in our experiments had square cross-sections and
were cut from bars of commercial aluminum alloy (Type: 2420). In all cases,
the length of the beams was measured to be ¸"400)3$0)3 mm. Beam height
varied from 9)30$0)05 to 9)45$0)05 mm among beams, depending on the
aluminum stock. Cracks were cut using a 2)5 mm end mill, which resulted
in crack-width-to-beam-length ratios of (6)5$0)5)]10~3. Clamping of the
beams was secured through the use of two heavy steel jaws. The whole
experimental set-up allowed for reproducibility of the frequency measurements
well within 0)5%.

3. MATHEMATICAL MODELLING

In the physical system under consideration, shown in Figure 1, the beam has
a uniform rectangular cross-section and the crack is located at position x

c
. In the

case of harmonic #exural vibrations of Bernoulli}Euler beams, the following
non-dimensional equation arises:

d4=(X)
dX4

!X2=(X)"0 (1)

In the latter expression, the non-dimensional variables are de"ned as

X"

x
¸

, X2"u2
A

0
¸4o
EI

,

where ¸ is the total length of the beam, A
0

is the cross-sectional area, o is the
mass density, E is the modulus of elasticity of the beam, and I is the area moment
of inertia for the beam cross-section. Due to the localized crack e!ect, the
cracked beam can be simulated as two uniform beams joined together by
a torsional spring at the crack location [12]. The problem has then an exact
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solution given by
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with X"c2 and X"x/¸. In the case under study, the boundary conditions in both
ends of the beam are
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The non-dimensional local #exibility can be computed from the strain energy
function, and is given as a function of both the ratio between the crack depth and
the beam thickness, H"h

c
/h, and the height to length ratio, e"h/¸, with h the

height of the beam. The continuity between the modes to the left and to the right of
the crack implies the following conditions at the crack location:
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where H (e, H) is the non-dimensional #exibility function. Di!erent functional
forms have been proposed, according to the symmetry of the crack [11, 13, 15]. In
this paper, we used the functional form proposed by Ostachowicz and Krawczuk
[11] for the case of non-symmetrical cracks, and the one proposed by Chondros
et al. [15] in their continuous vibration theory approach. These functions are,
respectively,

H
1
(e, H)"3neH2

](0)6384!1)035 H#3)5 H2!5)1773 H3#7)553 H4

!7)332 H5#2)4909 H6) (5)
and

H
2
(e, H)"3neH2

](0)6272!1)04533 H#4)5948 H2!9)9736 H3#20)2948 H4

!33)0351 H5#47)1063 H6!40)7556 H7#19)6 H8)) (6)

It is important to note that the #exibility due to the crack is not distributed over
the length of the beam as supposed in reference [14], but it is localized in the crack
position. In spite of this, an excellent agreement with the experimental values is
obtained.

4. RESULTS AND CONCLUSIONS

Figures 3 and 4 and Table 1 show results of both experimental determinations
and theoretical modelling. Figure 3 depicts the crack's second modal frequency for



Figure 3. Comparison between the second resonance frequency obtained experimentally and those
calculated, for di!erent positions and depths of the crack using both H functions. Dots are
experimental results. The error in the determination of the frequency ratio is of the order of 1%. In all
"gures, upper curves correspond to function H

1
and lower curves correspond to function H

2
.

(a) X
c
"0)25, (b) 0)5, (c) 0)63.
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Figure 4. Comparison between the experimental values and the mathematical model for di!erent
modal frequencies. The crack is located at x"0)049. (a) X

1
/X

10
, (b) X

2
/X

20
, (c) X

3
/X

30
.
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TABLE 1

Normalized non-dimensional frequencies of a cantilever beam

xc/¸ hc/h f1 f2 f3 f4 f5

0)05 0)21 0)97 0)99 0)99 1)00 1)00
0)42 0)90 0)94 0)97 0)99 0)99
0)60 0)77 0)89 0)95 0)98 0)99
0)78 0)48 0)82 0)92 0)96 0)96

0)13 0)19 0)98 1)00 1)00 1)00 0)99
0)39 0)94 0)99 1)00 0)99 0)97
0)62 0)80 0)98 1)00 0)97 0)90
0)78 0)54 0)96 1)00 0)94 0)80

0)25 0)22 0)99 1)00 0)99 0)99 1)00
0)42 0)95 1)00 0)95 0)96 0)99
0)59 0)85 0)99 0)90 0)92 0)98
0)80 0)59 0)98 0)79 0)86 0)98

0)50 0)22 1)00 0)99 1)00 0)99 1)00
0)42 0)98 0)94 1)00 0)96 1)00
0)59 0)95 0)85 0)99 0)89 1)00
0)80 0)81 0)64 0)99 0)77 0)99

0)63 0)19 1)00 0)99 0)99 1)00 0)99
0)39 1)00 0)96 0)97 1)00 0)96
0)62 1)00 0)87 0)91 1)00 0)91
0)78 0)94 0)65 0)83 0)99 0)82

0)71 0)21 0)99 0)99 0)98 1)00 0)99
0)42 0)99 0)96 0)93 0)98 0)99
0)60 0)98 0)89 0)85 0)96 0)98
0)78 0)96 0)68 0)72 0)94 0)95

1202 LETTERS TO THE EDITOR
di!erent locations and depths of the crack. Figure 4 shows the changes on the
modal frequencies as a function crack's depth for a crack location close to the
clamping. Table 1 summarizes the experimental results for the determination of the
lower "ve non-dimensional normalized natural frequencies of the cantilever beam
under study. The normalization factor is the corresponding modal frequency of the
virgin beam.

Data shows that the in#uence of a crack with a given depth on the natural
frequency of the beam strongly depends on the crack's location. When the crack is
at a position where the modal shape of the virgin beam has a small curvature, it
produces a very small e!ect on the natural frequency. Conversely, at those locations
where the curvature of the modal shape is large, the e!ect of the crack is easily
detected. For example, for the second modal shape there is only one node placed at
x/¸"0)78. The curvature is null at x/¸ "0)22 and maximum at x/¸"0)52.
Accordingly, Table 1 reveals that the change in the second modal frequency is
maximum when the crack is located at x/¸"0)5 (near the point of maximal
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curvature) and minimum when the crack is located at x/¸"0)25 (near the point of
zero curvature).

A comparison between the experimental values and the theoretical results shows
a good agreement for crack depths of up to 80% of the total height on both
#exibility functions. However, it is evident from the graphs that the best approach
for H'0)6 is the one proposed in reference [15].
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